## SHORT PAPER

# Stereoselective synthesis of (*Z*)-ketene selenothioacetals *via* hydrozirconation of alkylacetylenic selenides<sup>†</sup>

Ping Zhong<sup>a</sup>\* and Meng-Ping Guo<sup>b</sup>

<sup>a</sup>Department of Chemistry, Wenzhou Normal College, Xueyuandong Road, Wenzhou, 325000, P.R. China

<sup>b</sup>Department of Chemistry, Yichun College, 587 Huanchengxi Road, Yichun, 336000, P.R. China

Hydrozirconation of internal acetylenic selenides afforded (*E*)- $\alpha$ -zirconated vinylic selenide intermediates, which react with alkylsulfenyl chlorides to give (*Z*)-ketene slenothioacetals in good uield.

Keywords: Hydrozirconation of internal acetylenic selenides

Organoselenium chemistry is of current interest from a synthetic and structural point of view.<sup>1</sup> Recently, many 1,1-, or 1,2-bimetalloalkenes have been used in the stereoselective syntheis of trisubstituted alkenes. However, there are only a rew reports on the preparation of ketene selenothioacetals.<sup>2-4</sup> The alkylation of Se-alkyl carboxylic thionoselenoesters enethiolates lead to a mixture of (E)- and (Z)-ketene thioselenoacetals.<sup>2</sup> The reaction of lithium alkyneselenolates gave rise to lithium eneselenolates, which were trapped with alkyhalides to afford (Z)-ketene selenothiothiacetals, whereas trapping with allylic bromides yielded  $\gamma$ , $\delta$ -unsaturated seleothioesters *via* a seleno-Claisen rearrangement.<sup>3</sup> Selenothioic acid S-alkyl eesters were treated with Et<sub>3</sub>N and Cd(OAc)<sub>2</sub>·2H<sub>2</sub>O to give symmetrically substituted seleophenes, whereas the similar reaction in the presence of alkyl halides afforded ketene selenothioacetals.<sup>4</sup> In this paper, we have studied the hydrozirconation of internal acetylenic sleenides, in order to develop a new method for stereoselective synthesis of (Z)-ketene thioselenoactals.

Internal acetylenic selenides react with  $Cp_2Zr(H)Cl^5$  in THF at room temperature to give the  $\alpha$ -zirconated vinyl selenides **2**,<sup>6,7</sup> which afford (*Z*)-ketene selenothioacetals **3** in good yields when treated with alkyl sulfenyl chlorides.<sup>8</sup>



 $R = Ph, n-C_6H_{13}; R^1 = CH_3, CH_3CH_2, i-Bu; R^2 = CH_3, CH_3CH_2, i-Bu, PhCH2$ 

#### Scheme 1

The compounds **3a**<sup>2</sup>, **3b**<sup>3</sup>, **3c**, **3d**<sup>3</sup>, **3e**<sup>2</sup>, **3f**<sup>2</sup>, **3g**<sup>2</sup> and **3h**<sup>2</sup> were purified by preparative TLC on silica gel and fully characterised by <sup>1</sup>H NMR spectroscopy.

In summary, the present reaction provides a new synthetic route to (Z)-ketene selenothioacetals. Further synthetic applications of (Z)-ketene selenothioacetals are in progress.

### Experimental

<sup>1</sup>H NMH spectra were recorded on Bruker AC-300 spectrometer in CDCl<sub>3</sub> as the solvent with TMS as an internal standard. IR spectra were detemined using a PE-683 as neat films. Mass spectra were

| Table 1 | Synthesis of (Z)-ketene selenothioacetals 3 |  |
|---------|---------------------------------------------|--|
|---------|---------------------------------------------|--|

| Entry | R                                        | R <sup>1</sup>  | R <sup>2</sup>                  | Yieldª/% |  |  |
|-------|------------------------------------------|-----------------|---------------------------------|----------|--|--|
| 3a    | Ph                                       | CH3             | CH₃                             | 79       |  |  |
| 3b    | Ph                                       | CH <sub>3</sub> | <i>i</i> -Bŭ                    | 73       |  |  |
| 3c    | Ph                                       | CH <sub>3</sub> | PhCH <sub>2</sub>               | 81       |  |  |
| 3d    | Ph                                       | CHŽCH3          | <i>i</i> -Bu                    | 73       |  |  |
| 3e    | Ph                                       | <i>i</i> -Bū    | CH3                             | 69       |  |  |
| 3f    | <i>n</i> -C <sub>6</sub> H <sub>13</sub> | CH3             | CH <sub>3</sub>                 | 76       |  |  |
| 3g    | <i>n</i> -C <sub>6</sub> H <sub>13</sub> | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub> | 71       |  |  |
| 3h    | <i>n-</i> C <sub>6</sub> H <sub>13</sub> | CH₃             | PhĒH₂                           | 82       |  |  |

<sup>a</sup>lsolated yield.

obtained on Finigan 8230 mass spectrometer. Silica gel 60 GF<sub>254</sub> was used for analytical and preparative TLC. All reactions were carried out in pre-dried glassware (150°C, 4 h) and cooled under a stream of dry nitrogen. All solvents were dried, deoxygenated and redistilled before use. Internal acetylenic slenides and alkyl sulfenyl chlorides were prepared according to the literature methods.<sup>9,8</sup>

General procedure for the synthesis of 3a-f: A mixture of Cp<sub>2</sub>Zr(H)Cl<sup>5</sup> (1 mmol) and terminal alkyne 1 (1 mmol) in THF (5 ml) was stirred at room temperature for 30 min. The resulting solution was cooled to 0°C and into it was injected freshly prepared R<sup>2</sup>SCl<sup>8</sup> (1 mmol). The mixture was stirred at room temperature for 30 min and the solvent was removed subsequently under reduced presure. The residue was extracted with light petroleum (3 × 6 ml) and filtered through a short plug of silica gel. After evaporation of the filtrate, the residue was purified by preparative TLC on silica gel using light petroleum as eluent.

**3a:** Oil. IR (film): v = 2978, 2953, 2872, 1610, 1550, 1495, 1270, 1242, 1065, 1020, 915, 750, 685; <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta = 7.50-7.20$  (m, 5H), 6.90 (s, 1H, PhC*H*), 2.41 (s, 3H, SC*H*<sub>3</sub>), 2.21 (s, 3H, Se *CH*<sub>3</sub>); MS: *m*/z =244 (M<sup>+</sup>). Anal. Calcd. for C<sub>10</sub>H<sub>12</sub>SSe: C, 49.18; H, 4.92; Found C, 49.48, H, 4.93.

**3b**: Oil. IR (film): v = 2957, 2927, 2870, 1598, 1560, 1492, 1265, 1240, 1075, 1030, 920, 750, 690. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta = 7.53-7.20$  (m, 5H), 7.10 (s, 1H, Ph*CH*), 2.70 (d, J = 6.8 Hz, 2H, SC*H*<sub>2</sub>) 2,20 (s, 3H, SeC*H*<sub>3</sub>), 1.93 (q, J = 6.7 Hz, 1H, C*H*Me<sub>2</sub>), 1.05 (d, J = 6.7 Hz, 6H, C*H*<sub>3</sub>). MS: m/z = 286 (M<sup>+</sup>). Anal. Calcd. for C<sub>13</sub>H<sub>18</sub>SSe: C, 54.55; H, 6.29; Found C, 54.45, H, 6.31.

**3**c: Oil. IR (film): v = 3050, 2960, 2955, 1665, 1605, 1550, 1500, 1450, 1020, 750, 690; <sup>1</sup>H NMR (CDCl<sub>3</sub>);  $\delta = 7.50-716$  (m, 10H), 7.05 (s, 1H, PhCH), 3.97 (s, 2H, SCH<sub>2</sub>), 2.30 (s, 3H, SeCH<sub>3</sub>); m/z = 320 (M<sup>+</sup>). Anal. Calcd. for C<sub>16</sub>H<sub>16</sub>SSe: C, 60.00; H, 5.00; Found C, 60.01, H, 5.02.

**3d**: Oil. IR (film) v = 3055, 3020, 2960, 2920, 2860, 1655, 1600, 1560, 1485, 1030, 746, 695. <sup>1</sup>H NMR (CDCl<sub>3</sub>);  $\delta$  = 7.50–7.20 (m, 5H), 7.10 (s, 1H, PhCH), 2.83 (q, *J* = 7.5 Hz, 2H, SeCH<sub>2</sub>), 2.73 (d, *J* = 6.8 Hz, 2H, SCH<sub>2</sub>), 1.90 (q, *J* = 6.6 Hz, 1H, CHMe<sub>2</sub>), 1.36 (t, *J* = 7.5 Hz, 3H, CH<sub>2</sub>CH<sub>3</sub>), 1.05 (d, *J* = 6.6 Hz, 6H, CH<sub>3</sub>). MS: *m*/z = 300 (M<sup>+</sup>). Anal. Calcd. for C<sub>14</sub>H<sub>20</sub>SSe: C, 56.00; H, 6.67. Found C, 56.29, H, 6.78.

**3e**: Oil. IR (film): v = 2960, 2930, 2870, 1650, 1600, 1555, 1505, 1490, 1265, 1025, 920, 750, 690. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta = 7.55-7.20$  (m, 5H), 7.05 (s, 1H, PhC*H*), 2.72 (d, J = 6.8 Hz, 2H, SeC*H*<sub>2</sub>), 2.40

<sup>\*</sup> To receive any correspondence. E-mail: yczhongp@public1.ycptt.jx.cn

<sup>&</sup>lt;sup>†</sup> This is a Short Paper, there is therefore no corresponding material in *J Chem. Research (M).* 

(s, 3H, SCH<sub>3</sub>), 1.88 (q, J = 6.6 Hz, 1H, CHMe<sub>2</sub>), 1.00 (d, J = 6.5 HZ, 6H, CH<sub>3</sub>); MS: m/z = 286 (M<sup>+</sup>). Anal. Calcd. for C<sub>13</sub>H<sub>18</sub>SSe: C, 54.55; H, 6.29. Found C, 54.33, H, 6.38.

**3f**: Oil. IR (film): v = 2930, 2860, 1610, 1550, 1385, 1270, 1242, 920, 780, 680; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta = 6.50$  (t, J = 6.0 Hz, 1H, C = CH), 240 (s, 3H, SCH<sub>3</sub>), 2.20 (s, 3H, SeCH<sub>3</sub>), 2.10 (m, 2H), 1.50–0.90 (m, 11H); MS: m/z = 252 (M<sup>+</sup>). Anal. Calcd. for  $C_{10}H_{20}$ SSe: C, 47.62; H, 7.94. Found C, 48.16, H, 7.97.

**3g**: oil. IR (Film): v = 2925, 2865, 1605, 1555, 1382, 1280, 1240, 925, 790, 680; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta = 6.47$  (t, J = 6.0 Hz, 1H, C = CH, 2.70 (q, J = 6.5 Hz, 2H, SCH<sub>2</sub>), 2.25 (s, 3H, SeCH<sub>3</sub>), 2.10 (m, 2H), 1.55–0.95 (m, 14 H); MS: m/z = 266 (M<sup>+</sup>). Calcd. for C<sub>11</sub>H<sub>22</sub>SSe: C, 49.62; H, 8.27. Found C, 49.97, H, 8.30. **3h**: Oil. IR (film): v = 3040, 2950, 2875, 1645, 1600, 1550, 1500,

**3h**: Oil. IR (film): v = 3040, 2950, 2875, 1645, 1600, 1550, 1500, 1450, 1030, 750, 693; <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta = 7.50-7.18$  (m, 5H), 6.55 (s, 1H, J = 6.0 Hz, 1H, C = CH), 3.95 (s, 2H, SCH<sub>2</sub>), 2.25 (s, 3H, SeCH<sub>3</sub>), 2.10 (m, 2H), 1.55-0.95 (m, 11 H); m/z = 328 (M<sup>+</sup>). Anal. Calcd. for C<sub>16</sub>H<sub>24</sub>SSe: C, 58.54; H, 7.32; Found C, 58.41, H, 7.32.

This work was supported by The Major Laboratory of Organic Chemistry, Zhejiang University. Received 10 September 2000; accepted 17 February 2001 Paper 00/525

#### References

- 1 E.N. Deryagina, M.G. Voronkov and N.A. Korchevin, *Russ. Chem. Rev.*, 1993, **62**, 1107.
- 2 M. Lemarié, Y. Vallée and M. Worrell, *Tetrahedron Lett.*, 1992, 33, 6131.
- 3 T. Marai, K. Kalami, N. Itoh, T. Kanda and S. Kato, *Tetrahedron*, 1996, **52**, 2839.
- 4 T. Marai, M. Fujii, T. Kanda and S. Kato, Chem. Lett., 1996, 877.
- 5 S.L. Buchwald, S.J. LaMaire, R.B. Nielsen, B.T. Watson and S.M. King, *Tetrahedron Lett.*, 1987, **28**, 3895.
- 6 A.-M. Sun and X. Huang, *Tetrahedron*, 1999, 55, 13201.
- 7 A.-M. Sun and X. Huang, J. Chem. Res., S, 1998, 616.
- 8 D.N. Harpp, B.T. Friedlander and R.A. Smith, *Synthesis*, 1979, 181.
- 9 E. Lang, H. Keller, W. Imhof and S. Martin, *Chem. Ber.*, 1990, 123, 417.

# 372 J. CHEM. RESEARCH (S), 2001